
Pacific Graphics 2019
C. Theobalt, J. Lee, and G. Wetzstein
(Guest Editors)

Volume 38 (2019), Number 7

FontRNN: Generating Large-scale Chinese Fonts via Recurrent
Neural Network

Shusen Tang† , Zeqing Xia† , Zhouhui Lian‡ , Yingmin Tang, Jianguo Xiao

Institute of Computer Science and Technology, Peking University, Beijing, P.R. China
Center For Chinese Font Design and Research, Peking University, Beijing, P.R. China

{tangshusen, zeqing.xia, lianzhouhui, tangyingmin, xiaojianguo}@pku.edu.cn

Abstract
Despite the recent impressive development of deep neural networks, using deep learning based methods to generate large-
scale Chinese fonts is still a rather challenging task due to the huge number of intricate Chinese glyphs, e.g., the official
standard Chinese charset GB18030-2000 consists of 27,533 Chinese characters. Until now, most existing models for this task
adopt Convolutional Neural Networks (CNNs) to generate bitmap images of Chinese characters due to CNN based models’
remarkable success in various applications. However, CNN based models focus more on image-level features while usually
ignore stroke order information when writing characters. Instead, we treat Chinese characters as sequences of points (i.e.,
writing trajectories) and propose to handle this task via an effective Recurrent Neural Network (RNN) model with monotonic
attention mechanism, which can learn from as few as hundreds of training samples and then synthesize glyphs for remaining
thousands of characters in the same style. Experimental results show that our proposed FontRNN can be used for synthesizing
large-scale Chinese fonts as well as generating realistic Chinese handwritings efficiently.

CCS Concepts
• Computing methodologies → Shape representations; Point-based models;

1. Introduction

Techniques that focus on handling characters have attracted inten-
sive attentions from researchers in the communities of Computer
Graphics and Computer Vision, among which the following two
topics are most popular: character recognition and glyph synthe-
sis, corresponding to the two basic skills of humans: reading and
writing. Thanks to the recent rapid development of Deep Neu-
ral Networks (DNNs), especially Convolutional Neural Networks
(CNNs), the field of character recognition has witnessed great suc-
cess [SBM80,ZZYL16,LYWW13,ZJX15], even on some recogni-
tion tasks, the reading skill of artificial intelligence (AI) has sur-
passed human beings [CWF∗15]. Meanwhile, many researchers
have made lots of attempts [Tia17,SRL∗17,ZYZ∗18,CZPM18] on
glyph synthesis. However, endowing AI with writing capability like
humans still needs to be explored further due to its complexity and
diversity, especially for the generation of large-scale Chinese fonts.

As we know, characters are typically presented in the form of
(bitmap) images and CNN based models have been proven to be ex-
tremely effective to process images. Thus, many CNN based meth-
ods [Tia17, SRL∗17, CZPM18] have been proposed to handle the

† Equal contribution.
‡ Corresponding author.

glyph synthesis task. However, existing methods that simply treat
characters as images could inevitably obtain unsatisfactory synthe-
sis results containing artifacts such as incorrect stroke connections,
wrong topology, blurs, and so on. Obviously, approaches capable
of processing and synthesizing characters in the sequential data
format as shown in Figure 1 are potential solutions to address the
above-mentioned problems.

In areas of Computer Vision and Computer Graphics, for recog-
nition relevant tasks such as image classification [SLJ∗15], face
recognition [PVZ∗15], object detection [RHGS15], etc, and gener-
ation relevant tasks like image style transfer [IZZE17], etc, CNN is
usually the winner mainly due to its powerful capability of spatial
information extraction. However, sequential data that implies abun-
dant temporal information is not suited to be processed by CNN.
Recurrent Neural Network (RNN) is more suitable to handle this
form of data widely used in areas such as natural language process-
ing [BCB14], speech processing [MGM15], etc. Here, we propose
to apply RNN to learn the font style from a few writing trajectory
samples for Chinese characters.

As shown in Figure 1, a Chinese character in the sequential data
format typically contains a number of strokes and each stroke is
made up of ordered points (data representation will be discussed
in detail in Section 3.1). And our proposed FontRNN aims at gen-
erating large numbers of Chinese characters in this format auto-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13861

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-0438-4032
https://orcid.org/0000-0001-6714-1148
https://orcid.org/0000-0002-2683-7170

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

1 2 3
4

5

6
7
8 9

10

11

12
13

16

15

1417

18

19

20
21

22 23

26

25

24

27

28

29
30 31

32

33

34

35

36

37

38

39

40

41

42

43

1 2 3 4
5
6 7

8

9

10

11

13

12 14

15

16

17

18

19

20

21
22

23 24

25
26

27

28
29

30

31
32

33
34
35 36

37 38
39

40

41 42
43 44

45
47

46

48

49

50

51

52

53

54
55

56
57

58
59

60

61

� �

Figure 1: Illustration of two Chinese characters in the sequen-
tial data format. A Chinese character usually consists of several
ordered strokes and each stroke can be simply represented as mul-
tiple points. As shown above, each color represents a stroke and
numbers represent the order of writing.

matically. At the first step towards our goal, we use only hundreds
of training samples to train the FontRNN, and each sample con-
tains two Chinese characters: reference and target. During training,
our model learns how to transform from reference characters into
corresponding target characters. Afterwards, in test stage, we only
feed the trained model with reference characters that have never
been seen before and then predict the writing trajectories of cor-
responding target characters. In fact, our proposed FontRNN is a
sequence-to-sequence (seq2seq) [SVL14] model for sequence style
transfer task. Recently, attention mechanism has been proven to be
helpful for many tasks, e.g., machine translation [BCB14,LPM15],
speech recognition [BCS∗16]. Therefore, we adopt an attention
layer, monotonic attention [RLL∗17] layer specifically, which can
improve our model’s performance markedly and enable the gener-
ated characters to be more readable and realistic.

Compared with the image representations, Chinese characters in
the sequential data format contain more dynamic sequential infor-
mation, e.g., temporal order. As shown in Figure 2, such sequen-
tial information is natural and valuable because we typically write
a Chinese character by drawing strokes one by one in the prede-
fined order instead of “rendering” an image at once and a writing
robot must receive sequential character signals instead of image-
like characters as input. Compared with existing methods in the
literature, our FontRNN can model the temporal information of
Chinese characters and write like humans. Generally speaking, our
main contributions are threefold:

• We propose a RNN based model called FontRNN to generate
Chinese characters which are represented as sequence-like for-
mat instead of the image format used in most existing mod-
els. Thus, our FontRNN can be more capable of reflecting the
human writing process. The code of FontRNN is available at
https://github.com/ShusenTang/FontRNN.
• Experimental results indicate that our FontRNN can be conve-

niently adopted for generating large-scale Chinese fonts which
used to be a time-consuming and labor-intensive task. To the best
of our knowledge, FontRNN is the first RNN based model which
can synthesize large-scale Chinese fonts through learning from
only hundreds of training samples.
• In addition, FontRNN can learn to synthesize cursive but read-

(a) (b)

Figure 2: Examples of the writing process of Chinese character.
(a) Human beings write a Chinese character by drawing strokes
one by one in correct order. (b) Synthesized sequential data by our
algorithm can be utilized in a robot to write characters on paper
like humans, and the video can be found in supplementary materi-
als.

able handwritten Chinese characters automatically. Just like hu-
man beings, even for the same character, FontRNN generates
different but reasonable handwriting at each time.

2. Related Work

In this section, we discuss the related work briefly. Recently, a num-
ber of algorithms have been proposed for the task of western (e.g.,
English) glyph generation, using RNNs [Gra13,APH18] as well as
other approaches [CK14, BBB∗18, HAU19]. In contrast to alpha-
betic languages such as English that contain very limited numbers
of letters, Chinese has a much larger dictionary, e.g., even the most
commonly used Chinese charset GB2312 consists of 6763 char-
acters. Thereby, for example, we can’t simply use one-hot encod-
ing vectors to represent Chinese characters as we represent English
characters. Basically, these two kinds of tasks have many differ-
ences and we only focus on the relevant works regarding Chinese
font generation in this section.

2.1. Component Assembling based Method

There exist some previous methods (e.g., [XJJL09, ZWC11, ZZ14,
PLS∗14, LZX16, MTS∗17]) that rely on the hierarchical represen-
tation of Chinese characters and synthesize a Chinese glyph by as-
sembling components of radicals or strokes. For example, Stroke-
Bank [ZZ14] decomposes every Chinese character into compo-
nents, i.e., strokes or radicals, and synthesizes characters through
mapping the standard font components to their handwritten coun-
terparts. FlexiFont [PLS∗14] scans and processes the camera-
captured handwritten character images, and then vectorizes and
normalizes these characters as personalized font libraries.

However, these component based models require a lot of prior
knowledge such as elaborate preceding parsing, and thus fail to
satisfactorily handle characters with complicated shapes and/or in
cursive handwriting styles.

2.2. GAN based Model

Recently, generative adversarial network (GAN) [GPAM∗14]
which contains two nets, i.e., generator and discriminator, has been

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

568

https://github.com/ShusenTang/FontRNN

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

Bidirectional
Encoder
RNN

Monotonic Attention Layer

Decoder
RNN

!" !# !$!%&" !%
. . .

. . .

ℎ"

(%)&# *%)&#(%)&" *%)&"(+ *+ (" *" (# *#

. . .ℎ" ℎ# ℎ$ ℎ%)&" ℎ%)ℎ," ℎ,# ℎ,$ ℎ,%&" ℎ,%

. . .
(" (%)&"

. . .

ℎ%)&"ℎ#(# ℎ$($ (%) ℎ%)&"

GMM
+

softmax
GMM
+

softmax

GMM
+

softmax
GMM
+

softmax
GMM
+

softmax

*"- *#- *$- *%)&"- *%)-. . .

reference(./):

target(0/):

generated
target(0/-):

ℎ,1: encoder hidden state
ℎ2: decoder hidden state
(1: attention context vector

Figure 3: An overview of our proposed FontRNN. (1) Encoder: A bidirectional RNN that takes a reference character [R1,R2, ...,RL] (L is the
actual points number of this character) as input and outputs all hidden states [ĥ1, ĥ2, ..., ĥL], each contains forward and backward states. (2)
Monotonic Attention Layer: This layer takes encoder’s output and current decoder hidden state hi as input and then calculates the context
vector ci according monotonic attention mechanism. (3) Decoder: By passing the previous attention context vector ci−1 and target input
Ti−1 through the decoder, FontRNN can obtain current decoder hidden state hi during the training phase. And the generated target T ′i can
be produced by sampling from ci and hi. After training, unlike the training process, we feed decoder the previous generated T ′i−1 as input.

actively studied in the field of deep learning, the generator learns
from real data distribution and generates realistic fake samples
while the discriminator distinguishes real from generated fake sam-
ples. Thanks to the GAN’s high-quality image synthesizing ability,
recent GAN based models can synthesize readable Chinese charac-
ters images. [Kog15] made a preliminary attempt to generate Chi-
nese character images using DCGAN [RMC15]. The zi2zi [Tia17]
model, borrowed from pix2pix [IZZE17], adopts a style trans-
fer method using condition GAN to achieve the goal of Chinese
font generation. In zi2zi, a mapping was learned from source style
characters to target style characters by training with thousands of
character image pairs. After that, many GAN based methods have
emerged, such as DCFont [JLTX17], HAN [CGZ17], CycleGAN
based [CZPM18], etc. Unfortunately, these GAN based methods
inevitably suffer from time-consuming and untamed training stage,
and synthesize unreasonable or blurred results for characters with
complicated structures.

Besides, researchers also exploited other methods for Chinese
glyph generation. Sun et al. [SRL∗17] proposed a Style-Aware
Variational Auto-Encoder (SA-VAE) model to disentangle the la-
tent features into content-related and style-related components.
There exist two previous works on Chinese character generation
using RNN. [Ha15] was the first attempt using RNN for generating
Chinese characters but the quality of its synthesis results is poor
(unreasonable and unreadable). After that, Zhang et al. [ZYZ∗18]
adopted RNN to recognize Chinese handwriting characters, and in
order to strengthen their recognition network, they trained a gen-
erative RNN model for data augmentation. The input data of their
generative model includes a char embedding c trained jointly with
the model so its test character classes must have been seen in train-

ing stage and the generated results are mainly used as data augmen-
tation for its recognition model. In addition, their generative model
inevitably needs millions training samples to train the char embed-
ding c. In contrast, our work aims at new character generation that
only requires a small number of characters to generate the whole
charset.

3. Method

In this section, our proposed method is described. First, we briefly
introduce the representation of sequential data format. Then, the
proposed FontRNN framework is depicted in detail. Finally, we de-
scribe the simple additional CNN network that is used for recover-
ing the contour shape details on the generated character trajectories.

Generally speaking, our method implements step by step as fol-
lows. First, sequence based skeleton data (i.e., trajectory, see Sec-
tion 3.1) is directly taken as input for FontRNN (see Section 3.2).
Then, sequence based skeleton results synthesized by FontRNN are
rendered into bitmaps. Finally, the contour shape details of skele-
ton bitmaps are rendered using a CNN model (see Section 3.3). The
FontRNN and CNN networks are trained separately. For different
target fonts, each network needs to be trained from scratch.

3.1. Data Representation

As shown in Figure 1, Chinese characters can be simply regarded
as sequences of points. As suggested by [Gra13] and sketch-rnn
[HE17], we use a data format that represents a character as a list
of points and each point is a vector which contains 5 elements:
(∆x,∆y, p1, p2, p3). Namely, a Chinese character with L points can

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

569

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

be represented as

[P1, ...,PL],where Pi = (∆xi,∆yi, p1i, p2i, p3i). (1)

We add some padding elements to ensure that each character con-
tains the same number of points. Consequently, every character in
the font library can be denoted as

[P1, ...,PLm], (2)

where Lm is the points’ number of the character that contains max-
imum points. (∆x,∆y) ∈ R2 is the offset distance in the x and y
directions of the pen (i.e., current point) from the previous point,
particularly, (∆x1,∆y1) is the absolute coordinate of the first point
P1 and (∆xi,∆yi) is (0,0) if i > L. The (p1, p2, p3) represents a
binary one-hot vector of three possible point categories. The first
point category, p1, indicates that the pen is currently touching the
paper, so a line will be drawn to connect this point with the next
point. On the contrary, the second point category, p2, denotes the
end of one stroke and no line will be drawn next. The final point
category, p3, indicates that the writing has ended, so this point and
subsequent points will not be rendered, thus p3i = 0 if and only if
i > L.

In the next part of this paper, we use Ri and Ti to represent ref-
erence and target character points respectively, and T ′i is the gener-
ated target character point.

3.2. Generating Chinese Characters via RNN

As illustrated in Figure 3, our proposed FontRNN contains three
parts: an encoder, a decoder and a monotonic attention layer. Next
we’ll describe these three parts in detail.

3.2.1. Encoder

The encoder is a bidirectional RNN built by combining forward
and backward RNN which contains powerful capability of feature
extraction. Because of only using hundreds of training samples, we
do not use the multi-layer bidirectional RNN but a single-layer one
to avoid over fitting. During both training and testing processes,
our encoder takes a reference character which is represented by
[R1, ...,RL] as input, where L is the actual number of points of the
input character, and then produces L hidden states [ĥ1, ĥ2, ..., ĥL].
We can treat these hidden states as this Chinese character’s content
information which guides the decoder to generate correct character.

3.2.2. Monotonic Attention Layer

According to a national standard of Chinese character, GF3002-
1999, with regard to the same character in different font styles,
both the number of strokes and the order of strokes should be ex-
actly identical (It should be noted that the number of points in the
same stroke of a character written in different styles can be dif-
ferent.). That is to say, although we can write a Chinese character
in different writing styles, the order of writing strokes is typically
fixed. Namely, the alignment between reference and target char-
acters is monotonic. For example, there is no doubt that the ap-
pearance of the target stroke corresponding to the first stroke of
reference character should precede the appearance corresponding
to the second stroke of reference character. Accordingly, FontRNN

utilizes a monotonic attention [RLL∗17] layer to make decoding at
each timestep more focused. Experiments in section 4.3.2 demon-
strate the importance of this module.

As usual, we refer to the output [ĥ1, ĥ2, ..., ĥL] as "memory", the
monotonic attention layer processes the memory in a left-to-right
way: for decode timestep i the attention mechanism begins pro-
cessing memory entries starting at index ti−1, where ti is the index
of the memory entry chosen at decode timestep i. It then computes
an energy scalar ei, j for j = ti−1, ti−1 + 1, ... and uses a logistic
sigmoid function σ(·) to transform these energy scalars into prob-
abilities pi, j. A Bernoulli distribution parameterized by pi, j then
"chooses" a memory entry as the context vector ci. The above pro-
cess can be formulated as

ei, j = Energy(hi−1, ĥ j) (3)

pi, j = σ(ei, j) (4)

zi, j ∼ Bernoulli(pi, j), (5)

where Energy(hi−1, ĥ j) is a function that measures how well hi−1
and ĥ j match, we can define Energy(hi−1, ĥ j) as (6) or (7) referring
to [BCB14](Bahdanau Attention) and [LPM15](Luong Attention)
respectively.

Energy(hi−1, ĥ j) = vT
a tanh(Wahi−1 +Uaĥ j) (6)

Energy(hi−1, ĥ j) = hi−1Waĥ j. (7)

And each zi, j in (5) can be seen as a discrete choice of whether
picking ĥ j or not. As soon as zi, j = 1 for some j, the attention layer
stops and sets ti = j and ci = ĥ j. Note that the above computation
involves sampling, thus the model can not be trained via backprop-
agation. As suggested in [RLL∗17], we adopt the soft monotonic
attention and train model with respect to the expected value of ci.

3.2.3. Decoder

We use a RNN decoder which takes the previous attention output
ci−1 and target input Ti−1 (particularly, T0 is defined as (0, 0, 1, 0,
0)) as input, and produces a hidden state hi at each decode timestep.

Motivated by [Gra13], we model the offset (∆x,∆y) as a Gaus-
sian mixture model (GMM) with M bivariate normal distributions
and the point category (p1, p2, p3) as a 3-category classification
task. Therefore, the final output of decoder contains parameters of
GMM and categorical distribution, i.e.,

{{π̂m,µm
x ,µ

m
y , δ̂

m
x , δ̂

m
y , ρ̂

m
xy}M

m=1, q̂1, q̂2, q̂3}, (8)

where the superscript m above stands for the mth bivariate normal
distribution in GMM. In order to ensure the validity of above pa-
rameters, as suggested in [Gra13], we apply the following mathe-
matical operations

π
m =

exp(π̂m)

∑
M
k=1 exp(π̂k)

⇒ π
m ∈ (0,1),

M

∑
m=1

π
m = 1 (9)

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

570

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

δ
m
x = exp(δ̂m

x),δ
m
y = exp(δ̂m

y)⇒ δ
m
x ,δ

m
y > 0 (10)

ρ
m
xy = tanh(ρ̂m

xy)⇒ ρ
m
xy ∈ (−1,1) (11)

q j =
exp(q̂ j)

∑
3
k=1 exp(q̂k)

⇒ q1,q2,q3 ∈ (0,1),
3

∑
k=1

qk = 1. (12)

With regard to the mth bivariate normal distribution in GMM, π
m

denotes the distribution weight, µm
x and µm

y denote the means, δ
m
x

and δ
m
y are the standard deviations, and ρ

m
xy is the correlation pa-

rameter. Therefore, the probability density of (∆x,∆y) is

p(∆x,∆y) =
M

∑
m=1

π
mN (∆x,∆y|µm

x ,µ
m
y ,δ

m
x ,δ

m
y ,ρ

m
xy), (13)

whereN is the probability distribution function for a bivariate nor-
mal distribution

N (x,y|µx,µy,δx,δy,ρ) =
exp[−Z

2(1−ρ2)
]

2πδxδy
√

1−ρ2
(14)

Z =
(x−µx)

2

δ2
x

+
(y−µy)

2

δ2
y

− 2ρ(x−µx)(y−µy)

δxδy
. (15)

To train our model, we should define the loss function. Intu-
itively, our training loss consists of two parts: negative log-likehood
of (∆x,∆y) and the cross entropy of (p1, p2, p3), they can be for-
mulated respectively as

Lossd =− 1
L

L

∑
i=1

log(
M

∑
m=1
Pm(∆xi,∆yi)) (16)

Lossc =−
1

Lm

Lm

∑
i=1

3

∑
k=1

pk,ilog(qk,i), (17)

where

Pm(∆xi,∆yi) = π
mN (∆xi,∆yi|µm

xi ,µ
m
yi ,δ

m
xi ,δ

m
yi ,ρ

m
xyi)), (18)

L is the actual points’ number of current character, while Lm is
the maximum of all Ls in the font. As suggested in [HE17], we
discard the points beyond L when calculating Lossd , while Lossp
is calculated using all points until Lm. It should be noted that we
normalize Lossd by dividing it by L instead of Lm used in [HE17],
because for some characters that contain a few points the Lossd will
always be extremely close to zero if we divide it by Lm.

The total loss function is defined as the weighted summation of
Lossd and Lossc

Loss = Lossd +λcLossc, (19)

where the hyper parameter λc is the weight of Lossc. Then we can
optimize Loss for training our model.

After training, the decoder generates the parameters of GMM

...
...

C
yc
le
L
os
s

Encoder 1

Encoder 2

Decoder 1

Decoder 2

input
skeleton

generated
skeleton

L1
Loss

Binary Loss

generated
image

real
image

Figure 4: Illustration of our model for shape synthesis. All of the
images have pixel values from 0 to 1.

and categorical distributions at each timestep and samples an out-
put T ′i for that timestep, and then we feed decoder T ′i as the input
of next timestep. This process is repeated until the sampled p′3,i = 1
or i = Lm. When sampling from mth bivariate normal distribution,
we can use the means (µm

x ,µ
m
y) greedily as the determinate output

(e.g., fonts generation) as well as sampling randomly for the inde-
terminate output (e.g., handwriting generation).

3.3. Synthesizing Shape Details

In order to produce complete practicable font libraries, we need to
recover the contour shape of characters (i.e., skeletons/trajectories)
generated by FontRNN. Consequently, as shown in Figure 4, we
utilize a simple additional CNN based network that contains two
modified U-Net [RFB15] structures, one for shape synthesizing
and the other for extracting skeleton images from the former step
to refine the shape generated above in a circular way. Specifically,
each encoder (decoder) contains 9 layers and each one consists of
convolution (or de-convolution for decoder) layer, batch normaliza-
tion [IS15] and leaky relu (or relu for decoder) layer.

Besides the L1 loss, to avoid blurred results that often occur
in other models (e.g., pix2pix [IZZE17]), we adopt a pixel-wise
quadratic loss to force model to generate images with clear details

Lossbinary =
1
N

N

∑
i=1

x2
i (1− x2

i), (20)

where N is the number of pixels in one image. Lossbinary can make
the output pixel values close to 0 or 1.

In addition, the cycle loss between input skeleton and generated
skeleton is also computed using the L1 norm, thus the total loss is
combined with three parts

Loss = LossL1 +αLossbinary +βLosscycle, (21)

where we simply set β to 1, but α grows every epoch from 0.01
based on the following equation

α = 0.01+0.99α. (22)

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

571

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

Finally, the error backpropagation algorithm is utilized to optimize
the model.

4. Experiments

In this section, we first describe the details of our experiments in-
cluding datasets and hyper-parameters settings. After that, we show
experimental results in three parts: Chinese character generation via
RNN, shape synthesis and handwriting generation.

4.1. Datasets

We conduct our experiments on Chinese font libraries in section
4.3 and 4.4, as well as Chinese handwriting dataset in section 4.5.
Specifically, in section 4.3 and 4.4, we choose various font libraries
(each contains 6763 Chinese characters) in different styles and
extract the skeletons of strokes from character images in font li-
braries. We use an automatic method proposed in [LZCX18] to ex-
tract strokes, followed with a few manual adjustments when it fails
(if necessary). The stroke order is defined exactly as the national
standard GF3002-1999. Then we use the character set called opti-
mal set proposed in [LZCX18] as training set, which contains only
775 characters and covers nearly all kinds of components in the
font with 6763 Chinese characters, and we render all characters to
300×300 bitmap images for section 4.4.

In section 4.5, handwriting trajectories we used are from CASIA
[LYWW11] which were written cursively by humans. We increase
the size of the training set to 2000 because styles in handwritings
are more difficult to learn compared to those in fonts.

In all our experiments, we collect a set of Chinese fonts and
calculate the average writing trajectory for each character in these
fonts, which is used as our input reference trajectory. In addition, to
make FontRNN focus more on learning from key points, we adopt
the Ramer-Douglas-Peucker algorithm [DP73] on every sequential
character to remove redundant points.

4.2. Implementation Details

In this section, we introduce the implementation details of our mod-
els which include FontRNN and shape synthesis model described
in section 3.2 and 3.3, respectively.

4.2.1. FontRNN

We implement RNN encoder and decoder of our FontRNN using
Long Short-Term Memory (LSTM) [HS97] with 256 neurons on
account of its great capability of learning long-term dependencies.
When training FontRNN with batch size of 128, we use an Adam
optimizer with gradient clipping of 1.0. To alleviate over fitting,
we apply recurrent dropout [SSB16] with a keep probability of 0.6,
and, in addition, we perform data augmentation by multiplying the
(∆x,∆y) by a random scale factor chosen uniformly between 0.90
and 1.10 and dropping some points randomly with a chance of 0.10.
We set the weight of Lossc λc to 2.0 and M, the normal distribution
number of GMM, to 20.

In order to speed up the FontRNN training at the beginning of

Figure 5: Comparison of different attention methods.

Figure 6: Comparison of different training set sizes.

training while ensuring final convergence, we utilize a learning rate
decay strategy, the learning rate at training step i is computed as

Lri = (Lrmax−Lrmin)∗µi +Lrmin, (23)

where µ = 0.9999 is the decay rate, Lrmax = 0.001 and Lrmin =
0.00001 are the maximum and minimum learning rates, respec-
tively.

4.2.2. Model for Shape Synthesis

The convolution and deconvlution layers in Figure 4 all use 4-by-
4 filters with 2-by-2 strides. The α value of leaky relu layer is 0.2.
The last layer of decoder actually use 0.5(tanh(x)+1) for activation
function to limit output value between [0,1]. We also utilize dropout
with keeping probability 0.5 in decoder, and we still use an Adam
Optimizer with learning rate 0.001 and batch size 10 to train our
model for about 130 epochs.

4.3. Chinese Character Generation via RNN

4.3.1. Evaluation Metric

In order to quantitatively evaluate our FontRNN, an evaluation met-
ric needs to be determined. The most straightforward similarity
measure for sequences is Euclidean Distance and its variants, e.g.,

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

572

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

Table 1: Comparison of performance of models using different attention methods. Each column represents one font while each row represents
one attention mechanism. Each number (×10−3) represents the average normalized DTW over testing set.

FZJHSXJW FZSSBJW FZTLJW FZYNJW FZZJ-LPYBJW FZZJ-GBWKJW Average

No attention 2.7870 2.6619 4.0960 3.2481 2.7409 2.6711 3.0342
Bahdanau 1.5140 1.5460 3.4492 1.7024 1.7456 1.3617 1.8865
Luong 1.4393 1.8813 2.3113 1.8310 1.9469 1.7388 1.8581
monotonic Bahdanau 1.4429 1.4451 2.0546 1.3814 1.7475 1.4158 1.5812
monotonic Luong 1.4393 1.2990 2.0128 1.2982 1.7244 1.3762 1.5250

reference

real
FZJHSXJW
generated

real
FZSSBJW
generated

real
FZTLJW
generated

real
FZZJ-GBWKJW

generated

real
FZYNJW
generated

real
FZZJ-LPYBJW
generated

real
FZJunHJW
generated

real
FZJLJW
generated

Figure 7: Illustration of generated skeletons of different fonts by
FontRNN. More results can be found in supplementary materials.

L1 (Manhattan) and L2 (Euclidean) distance. However, since the
mapping between the points of generated and target sequences is
fixed, these distance measures are very sensitive to misalignments
and noise. Dynamic time warping (DTW) was proposed [BC94] to
solve the above problem of misalignments by ignoring local shift-
ing of sequence. In general, DTW calculates an optimal match be-

tween two given sequences with certain restrictions and the optimal
match has the minimal cost, where the cost is computed as the sum
of distance (e.g., we use L2 distance) between each matched pair of
points. More details about DTW can be found in [BC94].

In our case, we use the DTW distance to evaluate the accuracy of
coordinate prediction. We first convert the target and the predicted
relative coordinates into corresponding absolute coordinates C and
C′

C = [(x1,y1),(x2,y2), ...,(x|C|,y|C|)]

C′ = [(x′1,y
′
1),(x

′
2,y
′
2), ...,(x

′
|C′|,y

′
|C′|)],

(24)

where |C| and |C′| are the lengths of C and C′, respectively. Since
the sequence length |C| is different for various characters and DTW
cost is computed as the sum of distance between each matched pair
of points, we divide the DTW result by |C| to eliminate the effects
of different lengths. Meanwhile, we normalized the DTW result by
character spatial size for more robust evaluation metric. Namely,
the normalized DTW we used for evaluation is computed as

nDTW(C,C′) =
DTW(C,C′)

|C|
√

(xmax− xmin)2 +(ymax− ymin)2
, (25)

where

xmax =
|C|

max
i=1

xi, xmin =
|C|

min
i=1

xi

ymax =
|C|

max
i=1

yi, ymin =
|C|

min
i=1

yi.

(26)

4.3.2. Comparison of Attention Methods

As described in section 3.2.2, the monotonic attention layer is crit-
ical to our FontRNN. Here we conduct a series of experiments
on different kinds of Chinese fonts (e.g., FZJHSXJW, FZSSBJW,
FZTLJW) to prove this. For each font, we conduct five experiments
on our FontRNN with no attention, Bahdanau attention [BCB14],
Luong attention [LPM15], monotonic [RLL∗17] Bahdanau atten-
tion and monotonic Luong attention, respectively. The average
nDTW(C,C′) over testing set of each experiment is shown in Table
1. As we can see from Table 1, the results of methods using atten-
tion are much better than those without attention. As we expected
and analyzed in section 3.2.2, the monotonic mechanism can fur-
ther improve the performance of FontRNN.

Furthermore, we also compare the training processes of
FontRNN with different attention methods (Figure 5). According to

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

573

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

FZJHSXJW FZSSBJW FZTLJW FZYNJW FZZJ-LPYBJW FZZJ-GBWKJW

pix2pix

DCFont

zi2zi

FontSL

Ours

Ground
Truth

Figure 8: Illustration of six Chinese fonts with different styles synthesized by our method and other related methods. More results can be
found in supplementary materials.

Table 2: The characters recognition accuracy on six fonts generated by different methods.

FZJHSXJW FZSSBJW FZTLJW FZYNJW FZZJ-LPYBJW FZZJ-GBWKJW Average

pix2pix 0.9029 0.8039 0.1521 0.8583 0.6695 0.7553 0.6903
DCFont 0.9431 0.6590 0.3215 0.4683 0.8118 0.6289 0.6388
zi2zi 0.9435 0.9620 0.8005 0.9486 0.9042 0.8690 0.9046
FontSL 0.9556 0.9833 0.2164 0.9290 0.8849 0.9250 0.8157
Ours 0.9669 0.9801 0.8639 0.9765 0.9016 0.9374 0.9377
GroudTruth 0.9968 0.9846 0.9231 0.9950 0.9252 0.9820 0.9678

pix2pix

DCFont

zi2zi

FontSL

Ours

Ground
Truth

Figure 9: Illustration of details at the intersections of strokes.

Table 1 and Figure 5, we can conclude that monotonic attention al-
ways outperforms normal attention and FontRNN with monotonic
Luong attention converges faster during training and often gets bet-
ter results than that with monotonic Bahdanau attention. Thus we
adopt monotonic Luong attention in all following experiments.

Figure 10: Illustration of two types of failure cases.

4.3.3. Comparison of Training Set Sizes

In order to analyze the robustness of FontRNN, we evaluate the
performance with a series of training sets with different sizes that
contain 100, 200, 300, 400, 500, 600, 775, 900, 1000, 1200, 1400
and 1600 samples, respectively. The set with 775 samples is the
so-called optimal set [LZCX18] and elements in the sets with less
than 775 samples are randomly selected from the optimal set, while
the sets with more than 775 samples consist of the optimal set and
other randomly selected samples. As shown in Figure 6, the per-
formance of FontRNN improves overall as the training set size in-
creases but the improvement is not noticeable when the training set
size exceeds about one thousand. That is, FontRNN only needs less

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

574

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

Figure 11: Comparison of the Chinese handwriting generation us-
ing our FontRNN and the method in [ZYZ∗18]. Borrowed from
[ZYZ∗18], each color (randomly selected) denotes one straight
line.

Figure 12: Illustration of generated handwriting results in test set.
These character categories have not been seen during the training
process. More results can be found in supplementary materials.

than one thousand training samples to achieve good enough perfor-
mance. Thus we use the optimal set in all other experiments.

4.3.4. Capability of FontRNN

Next, we conduct a series of experiments with the configurations
described above on different fonts to qualitatively verify the effec-
tiveness and efficiency of our FontRNN. For each experiment, we
only use 775 training samples and it converges after around 7000
steps (spending less than 3 hours with an NVIDIA Titan-X 12G
GPU). Some experimental results are shown in Figure 7, the first

Table 3: The style classification
accuracy.

Accuracy

pix2pix 0.8999
DCFont 0.7717
zi2zi 0.9195
FontSL 0.8341
Ours 0.9846
GroundTruth 0.9911

Table 4: Results of user
study.

Model Frequency

pix2pix 0.0989
DCFont 0.1222
zi2zi 0.1897
FontSL 0.1677
Ours 0.4215

row represents the input reference characters and the next every
two rows represent a kind of font: the upper row denotes the ground
truth while the lower one shows the generated results by FontRNN.
As we can be seen from Figure 7, most ground-truth glyphs are very
similar to the generated ones, namely our proposed FontRNN can
handle different styles (e.g., neat and cursive) of fonts effectively.
These generated writing trajectories will be used as character skele-
tons in the following shape synthesis experiment.

4.4. Shape Synthesis

After generating character skeletons using FontRNN, we adopt an
additional simple networks described in section 3.3 to recover the
contour shapes of these characters.

4.4.1. Qualitative Comparison

As shown in Figure 8, we test our algorithm on six kinds of fonts
that vary from thin to thickness, tough to smooth, and many other
attributes, and compare the generated results with those gener-
ated using other four existing methods: pix2pix [IZZE17], DC-
Font [JLTX17], zi2zi [Tia17] and FontSL [LZX16]. From Figure
8 we can see that performances of other four methods are rela-
tively poor (especially on the unusual font FZTLJW) while our
method can synthesize high-quality results that are difficult to be
distinguished from the ground truth. Moreover, our method always
outperforms other algorithms at the intersections of strokes, as de-
picted in Figure 9, the intersections of strokes in our results are al-
ways reasonable and sharp. The reason is that each of our skeleton
is generated by drawing strokes one by one instead of “rendering”
an image at once and thus the stroke intersections of our synthe-
sis results are always realistic. Furthermore, the binary loss (see Eq
(20)) also makes the intersections clearer.

4.4.2. Quantitative Comparison

We quantitatively evaluate our method and other methods from two
aspects: content and style. With regard to content evaluation, we
utilize the VGG19 [SZ14] as a Chinese character recognizer and
train it on 273 fonts then test it on six fonts that are not used for
training. As we can see from Table 2, our method achieves the
highest accuracy, which obviously demonstrates that our method
is more capable to maintain the content information of characters.

Similarly, in term of style evaluation, we train a VGG11 model

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

575

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

on the ground truth of above six fonts as a 6-class style classifier.
The testing results are shown in Table 3, we can see that the ac-
curacy of our method is closest to the ground truth, that is to say
the styles of fonts synthesized by our method are most similar to
the ground truth. In conclusion, quantitative analysis proves that
our method is superior in terms of both content and style to other
existing methods compared here.

4.4.3. User Study

For further comparison of the synthesis results generated by differ-
ent methods, we conduct an experiment of user study. Specifically,
we make an online questionnaire that consists of 100 5-choice ques-
tions and each contains one real (i.e., ground truth) glyph image
and five corresponding fake glyph images generated by five differ-
ent methods, participants need to pick the one that is most similar
to the ground truth from the five fake images. Finally, a total of 79
people took part in this test. Selecting frequency of the characters
generated by each method is shown in Table 4. We can see that the
glyph images generated by our method are more likely to be se-
lected than other methods. In other words, more people think that
the glyphs generated by our method are more similar to the ground
truth compared to other approaches.

4.4.4. Failure Cases

In fact, performance of our method is still far from perfect. As
shown in Figure 10, there are roughly two types of failure cases
in our method. The first one is mainly caused by the imperfect ref-
erence skeletons, and the reason of the stroke missing of the output
in Figure 10(1) is that the missing stroke of the character from the
reference dataset is too short, thus the generated result is also very
short and even lost or covered by other strokes. The another one
is because of the error accumulation during the FontRNN decod-
ing phase. Namely, FontRNN predicts the current timestep output
based on the previous output, the error will accumulate to a large
extent if the sequence is long. For example, as shown in Figure
10(2), the prediction at the end of the generated skeleton becomes
untrustworthy thus the quality of the final synthesis result is poor.

4.5. Handwriting Generation

In addition to generating large-scale Chinese fonts with differ-
ent styles, our proposed FontRNN can generate cursive but read-
able handwritten Chinese characters automatically (see Figure 12).
Moreover, even for the same character, FontRNN will write vari-
ously at every time like humans (see Figure 11).

As mentioned in section 2, [ZYZ∗18] also propose to use RNN
to generate readable handwritten Chinese characters and thus it is
the most relevant work to our FontRNN. However, because of the
joint training of char embedding c, it needs more than two millions
training samples. On the contrary, we adopt the idea of style trans-
fer and use a much smaller training set (with only 2000 samples).

As shown in Figure 11, the generated characters in each row are
not exactly the same on account of the random sampling output pro-
cess, and handwritten characters generated by our FontRNN con-
tain richer details (namely, with more colors) than those produced

by [ZYZ∗18]. Furthermore, the method in [ZYZ∗18] does not al-
ways produce correct results, e.g., as indicated by the last two rows
in Figure 11(a), there are some missing strokes which make these
characters poor in readability.

Furthermore, although the method proposed in [ZYZ∗18] can be
used to synthesize handwritten characters, these character classes
must have been seen during training. Contrastively, as depicted in
Figure 12, our FontRNN can generate character classes that have
not been seen during training because of the utilization of transfer
learning strategy.

5. Conclusion

This paper proposed a novel network called FontRNN using RNN
with monotonic attention mechanism and transfer learning strat-
egy for Chinese characters generation in the sequential data for-
mat, which can be conveniently used for synthesizing large-scale
Chinese fonts. Moreover, FontRNN can learn to write cursive but
readable handwritten Chinese characters like humans. Compared
with most existing CNN base approaches which use image-like
representations, FontRNN can reflect the way of humans writing,
which is drawing strokes one by one in right order. Both qualita-
tive and quantitative experiments demonstrated the superiority of
our FontRNN on large-scale fonts synthesis as well as handwritten
character generation.

Acknowledgements

This work was supported by National Natural Science Foundation
of China (Grant No.: 61672056 and 61672043) and Key Labora-
tory of Science, Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technology).

References
[APH18] AKSAN E., PECE F., HILLIGES O.: Deepwriting: Making dig-

ital ink editable via deep generative modeling. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (2018),
ACM, p. 205. 2

[BBB∗18] BHUNIA A. K., BHUNIA A. K., BANERJEE P., KONWER
A., BHOWMICK A., ROY P. P., PAL U.: Word level font-to-font im-
age translation using convolutional recurrent generative adversarial net-
works. In 2018 24th International Conference on Pattern Recognition
(ICPR) (2018), IEEE, pp. 3645–3650. 2

[BC94] BERNDT D. J., CLIFFORD J.: Using dynamic time warping to
find patterns in time series. In KDD workshop (1994), vol. 10, Seattle,
WA, pp. 359–370. 7

[BCB14] BAHDANAU D., CHO K., BENGIO Y.: Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014). 1, 2, 4, 7

[BCS∗16] BAHDANAU D., CHOROWSKI J., SERDYUK D., BRAKEL P.,
BENGIO Y.: End-to-end attention-based large vocabulary speech recog-
nition. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on (2016), IEEE, pp. 4945–4949. 2

[CGZ17] CHANG J., GU Y., ZHANG Y.: Chinese typeface trans-
formation with hierarchical adversarial network. arXiv preprint
arXiv:1711.06448 (2017). 3

[CK14] CAMPBELL N. D. F., KAUTZ J.: Learning a manifold of fonts.
ACM Trans. Graph. 33, 4 (July 2014), 91:1–91:11. URL: http:
//doi.acm.org/10.1145/2601097.2601212, doi:10.1145/
2601097.2601212. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

576

http://doi.acm.org/10.1145/2601097.2601212
http://doi.acm.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212

Shusen Tang & Zeqing Xia & Zhouhui Lian & Yingmin Tang & Jianguo Xiao / FontRNN

[CWF∗15] CHEN L., WANG S., FAN W., SUN J., NAOI S.: Beyond
human recognition: A cnn-based framework for handwritten character
recognition. In Pattern Recognition (ACPR), 2015 3rd IAPR Asian Con-
ference on (2015), IEEE, pp. 695–699. 1

[CZPM18] CHANG B., ZHANG Q., PAN S., MENG L.: Generat-
ing handwritten chinese characters using cyclegan. arXiv preprint
arXiv:1801.08624 (2018). 1, 3

[DP73] DOUGLAS D. H., PEUCKER T. K.: Algorithms for the reduc-
tion of the number of points required to represent a digitized line or its
caricature. Cartographica: the international journal for geographic in-
formation and geovisualization 10, 2 (1973), 112–122. 6

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In Advances in neural information processing
systems (2014), pp. 2672–2680. 2

[Gra13] GRAVES A.: Generating sequences with recurrent neural net-
works. arXiv preprint arXiv:1308.0850 (2013). 2, 3, 4

[Ha15] HA D.: Recurrent net dreams up fake chinese characters
in vector format with tensorflow. blog.otoro.net (2015). URL:
http://blog.otoro.net/2015/12/28/recurrent-net-
dreams-up-fake-chinese-characters-in-vector-
format-with-tensorflow/. 3

[HAU19] HAYASHI H., ABE K., UCHIDA S.: Glyphgan: Style-
consistent font generation based on generative adversarial networks.
arXiv preprint arXiv:1905.12502 (2019). 2

[HE17] HA D., ECK D.: A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477 (2017). 3, 5

[HS97] HOCHREITER S., SCHMIDHUBER J.: Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780. 6

[IS15] IOFFE S., SZEGEDY C.: Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015). 5

[IZZE17] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-
to-image translation with conditional adversarial networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017), IEEE, pp. 5967–5976. 1, 3, 5, 9

[JLTX17] JIANG Y., LIAN Z., TANG Y., XIAO J.: Dcfont: an end-to-end
deep chinese font generation system. In SIGGRAPH Asia 2017 Technical
Briefs (2017), ACM, p. 22. 3, 9

[Kog15] KOGAN G.: A book from the sky: Exploring the latent space of
chinese handwriting. http://genekogan.com/works/a-book-
from-the-sky/, 2015. 3

[LPM15] LUONG M.-T., PHAM H., MANNING C. D.: Effective ap-
proaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015). 2, 4, 7

[LYWW11] LIU C.-L., YIN F., WANG D.-H., WANG Q.-F.: Casia
online and offline chinese handwriting databases. In 2011 Interna-
tional Conference on Document Analysis and Recognition (2011), IEEE,
pp. 37–41. 6

[LYWW13] LIU C.-L., YIN F., WANG D.-H., WANG Q.-F.: Online and
offline handwritten chinese character recognition: benchmarking on new
databases. Pattern Recognition 46, 1 (2013), 155–162. 1

[LZCX18] LIAN Z., ZHAO B., CHEN X., XIAO J.: Easyfont: A style
learning-based system to easily build your large-scale handwriting fonts.
ACM Trans. Graph. 38 (2018), 6:1–6:18. 6, 8

[LZX16] LIAN Z., ZHAO B., XIAO J.: Automatic generation of large-
scale handwriting fonts via style learning. In SIGGRAPH ASIA 2016
Technical Briefs (2016), ACM, p. 12. 2, 9

[MGM15] MIAO Y., GOWAYYED M., METZE F.: Eesen: End-to-end
speech recognition using deep rnn models and wfst-based decoding. In
Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE
Workshop on (2015), IEEE, pp. 167–174. 1

[MTS∗17] MIYAZAKI T., TSUCHIYA T., SUGAYA Y., OMACHI S., IWA-
MURA M., UCHIDA S., KISE K.: Automatic generation of typographic
font from a small font subset. arXiv preprint arXiv:1701.05703 (2017).
2

[PLS∗14] PAN W., LIAN Z., SUN R., TANG Y., XIAO J.: Flexifont: a
flexible system to generate personal font libraries. In ACM Symposium
on Document Engineering (2014). 2

[PVZ∗15] PARKHI O. M., VEDALDI A., ZISSERMAN A., ET AL.: Deep
face recognition. In BMVC (2015), vol. 1, p. 6. 1

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention (2015), Springer, pp. 234–241. 5

[RHGS15] REN S., HE K., GIRSHICK R., SUN J.: Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances
in neural information processing systems (2015), pp. 91–99. 1

[RLL∗17] RAFFEL C., LUONG M.-T., LIU P. J., WEISS R. J., ECK D.:
Online and linear-time attention by enforcing monotonic alignments. In
Proceedings of the 34th International Conference on Machine Learning-
Volume 70 (2017), JMLR. org, pp. 2837–2846. 2, 4, 7

[RMC15] RADFORD A., METZ L., CHINTALA S.: Unsupervised rep-
resentation learning with deep convolutional generative adversarial net-
works. arXiv preprint arXiv:1511.06434 (2015). 3

[SBM80] SUEN C. Y., BERTHOD M., MORI S.: Automatic recognition
of handprinted characters—the state of the art. Proceedings of the IEEE
68, 4 (1980), 469–487. 1

[SLJ∗15] SZEGEDY C., LIU W., JIA Y., SERMANET P., REED S.,
ANGUELOV D., ERHAN D., VANHOUCKE V., RABINOVICH A.: Go-
ing deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2015), pp. 1–9. 1

[SRL∗17] SUN D., REN T., LI C., SU H., ZHU J.: Learning to write styl-
ized chinese characters by reading a handful of examples. arXiv preprint
arXiv:1712.06424 (2017). 1, 3

[SSB16] SEMENIUTA S., SEVERYN A., BARTH E.: Recurrent dropout
without memory loss. arXiv preprint arXiv:1603.05118 (2016). 6

[SVL14] SUTSKEVER I., VINYALS O., LE Q. V.: Sequence to sequence
learning with neural networks. In Advances in neural information pro-
cessing systems (2014), pp. 3104–3112. 2

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014). 9

[Tia17] TIAN Y.: zi2zi: Master chinese calligraphy with conditional ad-
versarial networks. https://kaonashi-tyc.github.io/2017/
04/06/zi2zi.html, 2017. 1, 3, 9

[XJJL09] XU S., JIN T., JIANG H., LAU F. C.: Automatic generation of
personal chinese handwriting by capturing the characteristics of personal
handwriting. In IAAI (2009). 2

[ZJX15] ZHONG Z., JIN L., XIE Z.: High performance offline handwrit-
ten chinese character recognition using googlenet and directional feature
maps. In Document Analysis and Recognition (ICDAR), 2015 13th In-
ternational Conference on (2015), IEEE, pp. 846–850. 1

[ZWC11] ZHOU B., WANG W., CHEN Z.: Easy generation of personal
chinese handwritten fonts. In Multimedia and Expo (ICME), 2011 IEEE
International Conference on (2011), IEEE, pp. 1–6. 2

[ZYZ∗18] ZHANG X.-Y., YIN F., ZHANG Y.-M., LIU C.-L., BENGIO
Y.: Drawing and recognizing chinese characters with recurrent neural
network. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2018), 849–862. 1, 3, 9, 10

[ZZ14] ZONG A., ZHU Y.: Strokebank: Automating personalized chi-
nese handwriting generation. In AAAI (2014), pp. 3024–3030. 2

[ZZYL16] ZHONG Z., ZHANG X.-Y., YIN F., LIU C.-L.: Handwritten
chinese character recognition with spatial transformer and deep resid-
ual networks. In Pattern Recognition (ICPR), 2016 23rd International
Conference on (2016), IEEE, pp. 3440–3445. 1

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

577

http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://genekogan.com/works/a-book-from-the-sky/
http://genekogan.com/works/a-book-from-the-sky/
https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html
https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html

