

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

As-Compact-As-Possible Vectorization for Character Images

Zeqing Xia, Zhouhui Lian, Yingmin Tang, Jianguo Xiao

Institute of Computer Science and Technology Peking University

- Introduction
- Method Description
- Experimental Results
- Conclusion and Future Work

Introduction

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

• Raster Font \rightarrow Vector Font \neg Type 1 & Type 3

Truetype

Opentype

 CONFERENCE
 4 – 7 December 2018
 EXHIBITION
 5 – 7 December 2018
 Tokyo International Forum, Japan

BACKGROUND

• English Fonts

!"#\$%&'()*+,-./0123456
789:;<=>?@ABCDEFGHI
JKLMNOPQRSTUVWXYZ
[\]^_`abcdefghijklmnop
qrstuvwxyz{|}~

• Chinese Fonts

於與毛澤 经加加增加的结合的 建油						
				SPIRES -		

- Mobile Devices
 - Screen Size
 - Storage

MOTIVATION

• Human-based font design/vectorization

- Preserve significant detail
 - Use neural network
- Vectorization
 - With limited type of line segments

Sponsored by

• Vectorization for Chinese character & calligraphy

[Zhang et al. 2011]

Sponsored by

• Vectorization for Chinese character & calligraphy

Font Creator

Font Lab

FL VI: Unnamed Regular

Flag: × 1 . Search

period

Gloob Width

Detail recovery

SC / 25.58 dB

SRCNN / 27.95 dB

SRCNN [Zhang et al. 2011] 4× SRGAN (proposed)

Bicubic (30.80 dB / 0.9537)

VDSR [11] SRResNet [14] (32.82 dB / 0.9623) (34.00 dB / 0.9679)

EDSR+ (Ours) (34.78 dB / 0.9708)

EDSR [Lim et al. 2017]

CONFERENCE 4 – 7 December 2018

EXHIBITION 5 - 7 December 2018 Tokyo International Forum, Japan

SA2018.SIGGRAPH.ORG

SRGAN

[Ledig et al. 2016]

• Image & Font translation

pix2pix [Isola et al. 2016]

• Font translation

Rewrite [Tian et al. 2016]

CONFERENCE 4 – 7 December 2018

ク 胁胁 2 亮 亮 ő 5 尷 阏 阙 洧 装 装 洧 お 晋 晋 孰 孰 又 Z 吹 欧 斓斓 取 嚏嚏 否 否 椎 靥 渉 椎 訟 訟 湖 陰 陰 湖 涂 涂 **承 铎 铎** 瑗 瑗 拉 拉 泪 泪 氶 燠燠 虾 虾 系系閣関厕厕在在 组组祝祝教教镞镞 话 话 ... 瑾瑾 亏 亏 徒徒 彰 뙤 1000 磁 球球胎胎 隙 隙 節 林林 翎翎 뀹 êř 悋 浞 浞 蚊 蚊 努 晓睆 在 努 ぢ篇書語語筆筆 £ 瑋 瑋 zi2zi [Tian et al. 2017]

Tokyo International Forum, Japan

SA2018.SIGGRAPH.ORG

EXHIBITION

5 - 7 December 2018

Method Description

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

PROBLEM DESCRIPTION

- Vectorization
 - Source: Image (render from TTF/scan)

 Target: as-compact-as-possible contour fit for TTF (consist of Straight Line and quadratic Bezier Curve)

BEFORE & AFTER HUMAN ANNOTATION

- Number of points
- Unimportant detail and noise smoothed (blue)
- Important feature preserved (red)
- Seems almost same

EXHIBITION 5 – 7 December 2018

OVERVIEW

• Generate Process

OVERVIEW

- Problem Description
 - Given Input Contour *P*, Find the polygonal curve *Q* with minimum number of curve segments where error E(P) of each point is lower than a given bound ϵ .
 - For TTF font vectorization, the type of curves is limited to quadratic Bezier curve and straight line.

οP,

SIMPLIFICATION & VECTORIZATION

- Truetype
 - Developed by Apple and Microsoft in the late 1980s
 - To compete against Adobe's Type 1 fonts
- Quadratic Bezier curve

$$B(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$$

SA2018.SIGGRAPH.ORG

٩Ъ

t=0

- Error Calculation
 - Straight Line: Decided by edge point Q_0 and Q_1 For each integer point (x, y) on input contour, its error can be describe as

$$E(x, y) = \min_{0 \le t \le 1} \left\{ [x - S_x(t)]^2 + [y - S_y(t)]^2 \right\}$$

where $S(t) = (1 - t)Q_0 + tQ_1$

• Bezier Curve: Except for edge point Q_0 and Q_2 , Q_1 need to be estimated

- Estimation of middle point
 - Least Square Method
 - Use straight Line segments as initial "curve" and estimate their positions Given Input Contour Segment P_a to P_b , the estimate position of

 P_c should be

CONFERENCE 4 – 7 December 2018

$$t_c = \frac{\sum_{i=a}^{c-1} |P_i P_{i+1}|}{\sum_{i=a}^{b-1} |P_i P_{i+1}|}$$

• Getting each t_c , we can use Least Square Method to calculate the intermediate control point (also verbally called middle point) $M = \frac{\sum_{i=a}^{b} \left(2t_i(1-t_i)(P_i - (1-t_i)^2 P_a - (1-t_j)^2 P_b)\right)}{\sum_{i=a}^{b} \left(2t_i(1-t_i)(P_i - (1-t_i)^2 P_b)\right)}$

- Estimation of middle point
 - After getting middle point *M*, we come back to reestimate point positions

$$\widehat{t_c} = \underset{0 \le \widehat{t_c} \le 1}{\operatorname{argmin}} \left\{ \left\| (1 - \widehat{t_c})^2 P_a + 2\widehat{t_c} (1 - \widehat{t_c}) M + \widehat{t_c}^2 P_b - P_c \right\|_2^2 \right\}$$

- The solution of the above formula can be transformed into a cubic equation. Solving it, we can get a new $\hat{t_c}$ to reestimate middle point *M*
- It coverages in a few cycles.

• Find Furthest Possible position: check together

CONFERENCE4 – 7 December 2018EXHIBITION5 – 7 December 2018Tokyo International Forum, Japan

- Find Furthest Possible position: check together
 - Straight Line: If there exists one point 2ϵ away from the line between P_a and P_b

- Find Furthest Possible position: check together
 - Straight Line: If there exists one point 2ϵ away from the line between P_a and P_b
 - Quadratic Bezier curve: If there exists two points at the opposite side of the line between P_a and P_b , and at least 2ϵ away

- Check matches precisely
 - Render curve *Q* to integer points
 - Make sure Contour Segment P_a to P_b matches Q one by one

- Connect Segments
 - With algorithm proposed in [Kolesnikov et al. 2007]
 - Traverse start position
 - Calculate and update the minimal cost and backward pointer from near to far
 - Choose the position go around with least cost

- Dataset
 - 6763 characters in total
 - To cover all strokes
 - Choose 775 character train dataset[Lian et al. 2016]

TRAIN PROCESS

- Simplify Input data with a larger bound($\epsilon = 2 \text{ px}$ when image is 256×256)
- Choose 775 simplified input character image, pair with human annotated results.
- Train the GAN

GENERATE PROCESS

- Generate the remaining simplified input character to vectorized results
 - Generate "recovered" Image
 - Vectorize the above image with smaller tolerance ($\epsilon = 1 \text{ px}$)

Experimental Results

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

SIMILARITY

COMPRESSION

• Count the first 8 characters

Type/Method	Number of Control Points
Input	593
Font Creator	493
Pan's Method[Pan et al. 2014]	379
Our Method (w/o NN)	189
Our Method (with NN)	201
Human Annotation	290

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

- Denoising
 - Detail preserved
 - Less Points
 - smooth surface

(a) Input; (b) Our result, 50 control points; (c) Pan's method [Pan et al. 2014] with high resolution, 394 control points; (d) Pan's method [Pan et al. 2014] with low resolution, 79 control points.

Conclusion and Future Work

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan

- Data-driven vectorization method
 - make use of font designer knowledge
- Less storage
 - while preserving salient details
- Robustness

FUTURE WORK

- End-to-end vectorization network (e.g. Polygon-RNN [Castrejon et al. 2017] Polygon-RNN++[Acuna et al. 2018])
- Auto generation of vectorized fonts (instead of just generate images)

THANK YOU FOR YOUR ATTENTION!

zeqing. xia@pku. edu. cn

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG