
As-Compact-As-Possible
Vectorization for Character Images
Zeqing Xia, Zhouhui Lian, Yingmin Tang, Jianguo Xiao

Institute of Computer Science and Technology

 Peking University

• Introduction

• Method Description

• Experimental Results

• Conclusion and Future Work

OUTLINE

Introduction

• Raster Font Vector Font

BACKGROUND

Type 1 & Type 3

Truetype

Opentype

……

BACKGROUND

• English Fonts

• Chinese Fonts

• Mobile Devices

• Screen Size

• Storage

MOTIVATION

• Human-based font design/vectorization

MOTIVATION

• Preserve significant detail

• Use neural network

• Vectorization

• With limited type of line segments

POTENTIAL SOLUTIONS

• Vectorization and simplification for curves

POTENTIAL SOLUTIONS

[Plass et al. 1983] [Kolesnikov et al. 2007]

[Pan et al. 2014]

• Vectorization for Chinese character & calligraphy

POTENTIAL SOLUTIONS

[Zhang et al. 2011]

• Vectorization for Chinese character & calligraphy

POTENTIAL SOLUTIONS

Font Creator Font Lab

• Detail recovery

POTENTIAL SOLUTIONS

SRCNN
[Zhang et al. 2011]

SRGAN
[Ledig et al. 2016]

EDSR
[Lim et al. 2017]

• Image & Font translation

POTENTIAL SOLUTIONS

pix2pix
[Isola et al. 2016]

POTENTIAL SOLUTIONS

zi2zi
[Tian et al. 2017]

Rewrite
[Tian et al. 2016]

• Font translation

Method Description

• Vectorization

• Source: Image

(render from TTF/scan)

• Target: as-compact-as-possible contour fit for TTF

(consist of Straight Line and quadratic Bezier Curve)

PROBLEM DESCRIPTION

• Number of points

• Unimportant detail

and noise smoothed

(blue)

• Important feature

preserved (red)

• Seems almost same

BEFORE & AFTER HUMAN
ANNOTATION

OVERVIEW

• Generate Process

OVERVIEW

• Train Process

OVERVIEW

• Problem Description

• Given Input Contour 𝑃, Find the polygonal curve 𝑄 with

minimum number of curve segments where error 𝐸(𝑃) of

each point is lower than a given bound 𝜖.

• For TTF font vectorization, the type of curves is limited to

quadratic Bezier curve and straight line.

SIMPLIFICATION & VECTORIZATION

• Truetype
• Developed by Apple and Microsoft in the late 1980s

• To compete against Adobe’s Type 1 fonts

• Quadratic Bezier curve
𝐵 𝑡 = 1 − 𝑡 2𝑃0 + 2𝑡 1 − 𝑡 𝑃1 + 𝑡2𝑃2

SIMPLIFICATION & VECTORIZATION

• Error Calculation
• Straight Line: Decided by edge point 𝑄0 and 𝑄1

For each integer point 𝑥, 𝑦 on input contour, its error
can be describe as

𝐸 𝑥, 𝑦 = min
0≤𝑡≤1

[𝑥 − 𝑆𝑥(𝑡)]
2+ 𝑦 − 𝑆𝑦(𝑡)

2

where 𝑆 𝑡 = 1 − 𝑡 𝑄0 + 𝑡𝑄1

• Bezier Curve: Except for edge point 𝑄0 and 𝑄2,
 𝑄1 need to be estimated

SIMPLIFICATION & VECTORIZATION

• Estimation of middle point
• Least Square Method

• Use straight Line segments as initial “curve” and estimate their
positions
Given Input Contour Segment 𝑃𝑎 to 𝑃𝑏, the estimate position of
𝑃𝑐should be

𝑡𝑐 =
 𝑃𝑖𝑃𝑖+1
𝑐−1
𝑖=𝑎

 𝑃𝑖𝑃𝑖+1
𝑏−1
𝑖=𝑎

• Getting each 𝑡𝑐, we can use Least Square Method to calculate the
intermediate control point (also verbally called middle point)

𝑀 =
 2𝑡𝑖(1 − 𝑡𝑖)(𝑃𝑖 − 1 − 𝑡𝑖

2𝑃𝑎 − 1 − 𝑡𝑗
2
𝑃𝑏

𝑏
𝑖=𝑎

 2𝑡𝑖(1 − 𝑡𝑖)
2𝑏

𝑖=𝑎

SIMPLIFICATION & VECTORIZATION

• Estimation of middle point
• After getting middle point 𝑀, we come back to reestimate

point positions

𝑡𝑐 = argmin
0≤𝑡𝑐 ≤1

1 − 𝑡𝑐
2𝑃𝑎 + 2𝑡𝑐 1 − 𝑡𝑐 𝑀 + 𝑡𝑐

2
𝑃𝑏 − 𝑃𝑐

2

2

• The solution of the above formula can be transformed
into a cubic equation. Solving it, we can get a new 𝑡𝑐 to
reestimate middle point 𝑀

• It coverages in a few cycles.

SIMPLIFICATION & VECTORIZATION

• Find Furthest Possible position: check together

SIMPLIFICATION & VECTORIZATION

• Find Furthest Possible position: check together
• Straight Line: If there exists one point 2𝜖 away from the

line between 𝑃𝑎 and 𝑃𝑏

SIMPLIFICATION & VECTORIZATION

• Find Furthest Possible position: check together
• Straight Line: If there exists one point 2𝜖 away from the

line between 𝑃𝑎 and 𝑃𝑏

• Quadratic Bezier curve: If there exists two points at the
opposite side of the line between 𝑃𝑎 and 𝑃𝑏, and at least
2𝜖 away

SIMPLIFICATION & VECTORIZATION

• Check matches precisely
• Render curve 𝑄 to integer points

• Make sure Contour Segment 𝑃𝑎 to 𝑃𝑏 matches 𝑄 one by
one

SIMPLIFICATION & VECTORIZATION

• Connect Segments

• With algorithm proposed in [Kolesnikov et al. 2007]

• Traverse start position

• Calculate and update the minimal cost and backward pointer

from near to far

• Choose the position go around with least cost

SIMPLIFICATION & VECTORIZATION

• Dataset

• 6763 characters in total

• To cover all strokes

• Choose 775 character train dataset[Lian et al. 2016]

TRAIN PROCESS

TRAIN PROCESS

• Simplify Input data with a larger bound(𝜖 = 2 px

when image is 256×256)

• Choose 775 simplified input character image, pair

with human annotated results.

• Train the GAN

TRAIN PROCESS

GENERATE PROCESS

• Generate the remaining simplified input character

to vectorized results

• Generate “recovered” Image

• Vectorize the above image with smaller tolerance (𝜖 = 1 px)

GENERATE PROCESS

Experimental Results

SIMILARITY

(a) Input; (b) Ours w/o NN; (c) Ours with NN; (d) Pan's method[Pan et al. 2014] ; (e) FontCreator; (f) Manual vectorization.

• Count the first 8 characters

COMPRESSION

Type/Method Number of Control Points

Input 593

Font Creator 493

Pan’s Method[Pan et al. 2014] 379

Our Method (w/o NN) 189

Our Method (with NN) 201

Human Annotation 290

• Denoising

• Detail preserved

• Less Points

• smooth surface

DENOISING

(a) Input; (b) Our result, 50 control points; (c) Pan's method [Pan et al. 2014] with high resolution, 394
control points; (d) Pan's method [Pan et al. 2014] with low resolution, 79 control points.

Conclusion and Future Work

• Data-driven vectorization method

• make use of font designer knowledge

• Less storage

• while preserving salient details

• Robustness

CONCLUSION

• End-to-end vectorization network

(e.g. Polygon-RNN [Castrejon et al. 2017]

 Polygon-RNN++[Acuna et al. 2018])

• Auto generation of vectorized fonts

(instead of just generate images)

FUTURE WORK

THANK YOU FOR YOUR ATTENTION!

zeqing.xia@pku.edu.cn

